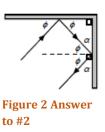

Physics 11-02 Reflection	Name:
Reflection	Reflected ray Normal
Law of Reflection: $\theta_r = \theta_i$ •	Normal Incident ray θ_1 θ_1 θ_1 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_2 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_1 θ_2 θ_1 θ_1 θ_1 θ_2 θ_1 θ_1 θ_1 θ_2 θ_1 θ_2 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1 θ_2 θ_1 θ_1
Spherical Mirrors • Concave: bends • Convex: bends • Convex: bends	Convex mirror Principal axis
 are alwaysto the surface and pass through theof curvature, C. Law of Reflection says that theto theis the same for theandrays Principal axis: imaginary line throughand theof the mirror. Focal point (F):rays strike the mirror andat the focal point. Focal length (f): distance betweenand Concave mirrors: f = ¹/₂ R Convex mirrors: f = -¹/₂ R 	F Principal axis



Physics 11-02 Reflection

Practice Work

- 1. Using the law of reflection, explain how powder takes the shine off of a person's nose. What is the name of the optical effect?
- 2. Show that when light reflects from two mirrors that meet each other at a right angle, the outgoing ray is parallel to the incoming ray, as illustrated in figure 1. (OpenStax 25.2) **See below**
- 3. Light shows staged with lasers use moving mirrors to swing beams and create colorful effects. Show that a light ray reflected from a mirror changes direction by 2θ when the mirror is rotated by an angle θ . (OpenStax 25.3) **See below**
- 4. What are the differences between real and virtual images? How can you tell (by looking) whether an image formed by a single lens or mirror is real or virtual?
- 5. Can you see a virtual image? Can you photograph one? Can one be projected onto a screen with additional lenses or mirrors? Explain your responses.
- 6. Is it necessary to project a real image onto a screen for it to exist?
- 7. Under what circumstances will an image be located at the focal point of a lens or mirror?
- 8. What is meant by a negative magnification? What is meant by a magnification that is less than 1 in magnitude?
- 9. Suppose a man stands in front of a mirror. His eyes are 1.65 m above the floor, and the top of his head is 0.13 m higher. (a) Find the height above the floor of the top and bottom of the smallest mirror in which he can see both the top of his head and his feet. (b) How is this distance related to the man's height? (OpenStax 25.1) **bottom 0.825 m, top 1.715 m; not related**
- 10. Some telephoto cameras use a mirror rather than a lens. What radius of curvature mirror is needed to replace a 800 mm focal length telephoto lens? (OpenStax 25.54) **+1.60 m**
- 11. Calculate the focal length of the mirror formed by the shiny back of a spoon that has a 3.00 cm radius of curvature. (OpenStax 25.55) -1.50×10^{-2} m
- 12. Electric room heaters use a concave mirror to reflect infrared (IR) radiation from hot coils. Note that IR follows the same law of reflection as visible light. Given that the mirror has a radius of curvature of 50.0 cm and produces an image of the coils 3.00 m away from the mirror, what is the magnification of the heater element. Note that its large magnitude helps spread out the reflected energy. (OpenStax 25.56) **-11.0**
- 13. What is the focal length of a makeup mirror that produces a magnification of 1.50 when a person's face is 12.0 cm away? (OpenStax 25.57) **0.360 m**
- A shopper standing 3.00 m from a convex security mirror sees his image with a magnification of 0.250. (a) Where is his image? (b) What is the focal length of the mirror? (c) What is its radius of curvature? (OpenStax 25.58) -0.750 m, -1.00 m, 2.00 m
- 15. An object 1.50 cm high is held 3.00 cm from a person's cornea, and its reflected image is measured to be 0.167 cm high. (a) What is the magnification? (b) Where is the image? (c) Find the radius of curvature of the convex mirror formed by the cornea. (Note that this technique is used by optometrists to measure the curvature of the cornea for contact lens fitting. The instrument used is called a keratometer, or curve measurer.) (OpenStax 25.59) +0.111, -0.334 cm, -0.752 cm

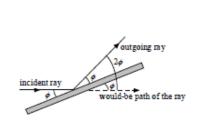
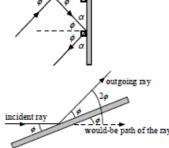



Figure 3 Answer to #3

Name: